Quantum Resistant Blockchain

TO READ:
“New Hope” post-quantum key exchange: https://eprint.iacr.org/2015/1092
[bookmark: _GoBack]

Note: It looks like someone has recently implemented a similar idea.

--Replace ECDSA (and other elliptic curve signature schemes) with Hash-Based Signatures (HBS). A user’s public/private key for receiving/signing transactions would be based on this HBS.
--If designing a system from scratch, it would probably be “account” based, with the MSS or LMS public key as the public address for receiving transactions. A transaction would include both the sending and receiving public keys and the One-Time Signature (OTS) info needed to verify it.
--Account based systems like this are completely transparent, with each user’s balances and transaction history completely visible.
--Using a scripting language similar to Bitcoin’s, extra features like multisignature transactions and 2nd layer scaling proposals may still be possible. Multisignature means that, in order for money to change hands, m-of-n specified signatures must be provided to the spending script. Using HBS should not impact this, EXCEPT that wallets would need to keep track of outstanding multisig transactions and make sure they have enough remaining signatures to apply to those scripts in the long term. See Problem 1.

Problem 1: HBS schemes only allow a limited number of signatures.
Solution: Wallet software should remind a user of when they are running low on signatures, and encourage them to create a new keypair, sending the rest of their “QuBitcoin” to the new address. This can be done repeatedly whenever needed.

Problem 2: The size of signatures would be very large, and create substantial network overhead, plus bloat the blockchain.
Solution: Something along the lines of Segregated Witness (BIP 141). With this proposal, already used on Litecoin and Vertcoin and long in the pipeline for Bitcoin, the “witness” data – that is, the signatures and scripts - of transactions is stored in a separate data structure, and not incorporated into the transaction Merkle tree. This can increase throughput. In addition, 2nd layer solutions (like the Lightning Network) can create a network of payment channels that can trustlessly exchange value off-chain.

Problem 3: The blockchain is completely transparent, and users would like anonymity/privacy.
Solution: There are currently three main ways that privacy is provided in cryptocurrencies: mixing services, ring signature schemes, and zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKS). They each have significant advantages and disadvantages, and current implementations have varying degrees of quantum-safety.

Mixing: Systems like CoinJoin take multiple transactions, combine them into a big one, and scramble the inputs and outputs. Quantum computers will not impact the privacy provided by this scheme. However, it doesn’t provide all that much anonymity in the first place, and relies upon having other people transacting at the same time. There are variants on CoinJoin, such as Dash’s PrivateSend, which may be better, but I need to investigate their quantum-resistance.
Zk-SNARKS: Most famously implemented in ZCash, and allows for perfectly anonymous transactions. However, it requires a trusted setup, which is a big no-no for a decentralized, trustless system! Zk-SNARKS have a lot of computational and storage overhead, and current implementations aren’t quantum-resistant. However, there has been some exploration of quantum-resistant zero-knowledge proofs, but these would add even more overhead. This is not ideal.

Finally, there is the privacy scheme implemented in CryptoNote-based currencies, most famously Monero. This involves three different techniques for three different purposes, “stealth addresses” to protect the privacy of a transaction’s recipient, “one-time ring signatures” to protect the privacy of the sender, and “confidential transactions” to shield the amount of the transaction. I would be most interested in re-creating a privacy scheme like this, which offers far better privacy than mixing/CoinJoin, is trustless, has a more moderate overhead than zk-SNARKS, and enforces privacy at a protocol level.

Stealth Addresses: One public key can be published and associated with a user’s identity, but the blockchain only shows unique, one-time addresses derived from the stealth address. Only the recipient has the required knowledge to recognize that an unspent transaction output is theirs and be able to spend it.
Stealth addresses rely on the additive homomorphism of ECC to make the public keys “tweakable”. Existing quantum-resistant signature schemes don’t seem to provide this. Here’s how Monero does it. Each user has two keypairs (a,A) and (b,B), where (A,B) is the publicly known stealth address. A sender creates the one-time public address by first choosing a random r such that R = rG, with G a generator for the elliptic curve. Then:
	P = H(rA)G + B
The transaction is broadcast with R (but not r, which is kept secret). Then the recipient can spend the Monero from that one-time address by calculating the one-time private key:
	X = H(aR) + b
The recipient can observe that xG = P, because xG = H(aR)G + bG = H(arG)G + B = H(rA)G + B = P.

Ring Signatures: Ring signatures obscure the sender in a transaction. The sender chooses a selection of public keys from the blockchain to form the ring signature with, and is able to prove that one of the public keys included is the sender, without revealing who. Unsurprisingly, I have not found any HBS ring signature schemes, but there are multivariate, lattice-based, and code-based schemes.

Confidential Transactions: Confidential transactions use a blinding factor, Pedersen Commitments and range proofs to obscure the values involved in a transaction (to everyone except the recipient), but allow anyone to verify that the inputs and the outputs sum to zero, resulting in no additional currency being created “out of thin air.” These use ECC and are thus not quantum-safe.

MimbleWimble???? Not QC-resistant as-is, but another approach worth looking into.

